
Planning Biped Locomotion using Motion Capture
Data and Probabilistic Roadmaps

MIN GYU CHOI

Korea Advanced Institute of Science and Technology

JEHEE LEE

Seoul National University

SUNG YONG SHIN

Korea Advanced Institute of Science and Technology

Typical high-level directives for locomotion of human-like characters are useful for interactive
games and simulations as well as for off-line production animation. In this paper, we present
a new scheme for planning natural-looking locomotion of a biped figure to facilitate rapid mo-
tion prototyping and task-level motion generation. Given start and goal positions in a virtual
environment, our scheme gives a sequence of motions to move from the start to the goal using
a set of live-captured motion clips. Based on a novel combination of probabilistic path planning
and hierarchical displacement mapping, our scheme consists of three parts: roadmap construction,
roadmap search, and motion generation. We randomly sample a set of valid footholds of the biped
figure from the environment to construct a directed graph, called a roadmap, that guides the lo-
comotion of the figure. Every edge of the roadmap is associated with a live-captured motion clip.
Augmenting the roadmap with a posture transition graph, we traverse it to obtain the sequence
of input motion clips and that of target footprints. We finally adapt the motion sequence to the
constraints specified by the footprint sequence to generate a desired locomotion.

Categories and Subject Descriptors: I.3.7 [Computer Graphics]: Three-dimensional Graphics
and Realism—Animation; G.3.0 [Probability and Statistics]: Probabilistic Algorithms—Path
Planning

General Terms: Animation, Path Planning

Additional Key Words and Phrases: Biped locomotion, Human navigation, Motion editing and
adaptation, Probabilistic path planning

This research was supported by the NRL (National Research Laboratory) program of KISTEP
(Korea Institute of Science & Technology Evaluation and Planning).
Author’s address: M. G. Choi, Department of Electrical Engineering & Computer Science, Korea
Advanced Institute of Science and Technology, 373-1 Kusong-dong, Yusong-gu, Taejon, 305-701,
Korea; J. Lee, ERC for Advanced Control and Instrumentation, Seoul National University, San
56-1, Shillim-dong, Kwanak-gu, Seoul, Korea; S. Y. Shin, Department of Electrical Engineering
& Computer Science, Korea Advanced Institute of Science and Technology, 373-1 Kusong-dong,
Yusong-gu, Taejon, 305-701, Korea.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2002 ACM 0730-0301/02/1000-0001 $5.00

ACM Transactions on Graphics, Vol. V, No. N, October 2002, Pages 1–25.

2 · Min Gyu Choi et al.

1. INTRODUCTION

1.1 Motivation and Objectives

The advent of motion capture systems offers a convenient means for acquiring real-
istic motion data. Due to the success of such systems, realistic and highly detailed
motion clips are commercially available and widely used for producing visually con-
vincing animations of human-like 3D characters in a variety of applications, such as
animation films and video games. Efforts have been focused on editing and manipu-
lating live-captured motion clips to provide effective ways of adapting motion clips
to the desired constraints specified by animators [Bruderlin and Williams 1995;
Gleicher 1998; Lee and Shin 1999; Rose et al. 1996; Unuma et al. 1995; Witkin
and Popović 1995]. However, motion planning with such motion clips has not been
explored, yet.

In this paper, we present a new planning scheme that produces a natural-looking
motion for a human-like biped figure to move from a given start position to a goal
position using a set of prescribed motions. An animation scenario is composed of
certain tasks, each of which can be fulfilled with a sequence of motions. Task-level
motion planning with canned motion clips can provide realistic motions at the early
stage of the animation design for rapid motion prototyping, that facilitates early
validation of an animation. It can also support an interactive animation, where a
user-controlled character interacts with a synthetic environment. To generate real-
istic motions in such an interactive animation, the user needs task-level directives.
However, traditional motion planning techniques [Hwang and Ahuja 1992; Latombe
1991] cannot achieve such directives with captured motion clips.

When the set of motions is limited to moving along a continuous path such as
walking and running, our goal might simply be achieved by separating path plan-
ning from motion generation. That is, one can first plan a continuous moving path
and then generate a motion along the path with captured motion data. However,
this approach cannot properly take into account the intrinsic property of biped loco-
motion: A biped character can move from one place to another over disconnected
regions by following a sequence of discrete footholds. Therefore, the continuous
path does not reflect well all the motion clips available.

Based on a novel combination of probabilistic path planning [Kavraki et al. 1996]
and hierarchical displacement mapping [Lee and Shin 1999], our scheme finds a
sequence of input motion clips and that of target footprints simultaneously, and then
retargets the motion sequence to yield a desired motion that follows the footprints.
Provided with a rich set of canned motion clips, the scheme enables a human-like
figure to perform a variety of motions such as running on flat terrain, jumping over
a crevice, and walking over stepping stones to reach the goal.

1.2 Related Work

Planning locomotion of a human-like figure is related to several different areas of
research. For our convenience, we classify these related works into five categories:
biped locomotion, human navigation, probabilistic path planning, motion editing,
and example-based motion synthesis.
ACM Transactions on Graphics, Vol. V, No. N, October 2002.

Planning Biped Locomotion using Motion Capture Data and Probabilistic Roadmaps · 3

Biped locomotion. Generating realistic biped locomotion has received increasing
attention in computer animation. An excellent survey on this field can be found
in [Multon et al. 1999]. Bruderlin and Calvert [1989] presented a goal-directed
dynamic approach that generates a desired walking motion for given parameters
such as velocity, step length, and step frequency. Boulic et al. [1990] exploited
biomechanical data to utilize their intrinsic dynamics. Ko and Badler [1996] also
presented a similar technique to produce dynamically-balanced walking that was
further generalized for curved path walking. They also were able to generate foot-
prints automatically. To generate a balanced walking, Laszlo et al. [1996] suggested
the notion of limit cycle control that adds closed-loop feedback to open-loop periodic
motions. Raibert and Hodgins [1991] showed that hand-designed controllers can
produce physically realistic legged locomotion. Hodgins et al. [1995] extended those
controllers to other motions of human athletics. Hodgins and Pollard [1997] also
described an automatic method to adapt existing controllers to new characters. An
optimization-based scheme was proposed by van de Panne [1997] to generate biped
locomotion from given footprints. This scheme was further extended to quadruped
locomotion [Torkos and van de Panne 1998]. Ko and Cremer [1995] proposed a
real-time method to generate human locomotion from positional input streams.
Chung and Hahn [1999] developed a hierarchical motion control system to generate
walking motion along a path on uneven terrain. Sun and Metaxas [2001] exploited
sagittal elevation angles to automate gait generation. Recently, procedural models
for biped locomotion have also been available as commercial animation packages,
such as Boston Dynamics “BDI Guy”, Credo Interactive “Life Forms Studio”, 3D
Studio Max “Character Studio”, and Avid “SOFTIMAGE|RTK”. These packages
generate biped locomotion from the user-specified moving trajectory of a character
or his/her footprints.

Human navigation. Reynolds [1987] introduced reactive behaviors to simulate
groups of simple creatures such as flocks of birds, herds of land animals, and schools
of fishes. Terzopoulos et al. [1994] simulated reactive behaviors of artificial fishes
with synthetic visions. Noser et al. [1996] presented a local navigation model for
human-like characters using synthetic visions. They also simulated a human mem-
ory model for avoiding obstacles [Noser et al. 1995]. Kuffner and Latombe [1999]
addressed a similar problem for dynamic environments. Reich et al. [1994] suggested
a real-time model for human navigation over uneven terrain. They adopted simu-
lated sensors to detect geometric features such as obstacles. Marti and Bunn [1994]
considered large-scale terrain represented as a height field over a 2D uniform grid.
Bandi and Thalmann [1998] discretized a synthetic environment into a 3D uniform
grid to search paths for autonomous characters.

Probabilistic path planning. Barraquand and Latombe [1991] elaborated a ran-
domized path planning technique, that is originally invented for escaping local min-
ima in a potential field. Thereafter, Kavraki and Latombe [1994] and Overmars and
Sv̌estka [1994] independently and jointly proposed similar methods [Kavraki et al.
1996] that randomly sample the configuration space as preprocessing, to construct a
roadmap and then search the roadmap for a path during the planning stage. These
methods have demonstrated good performance empirically for difficult problems,

ACM Transactions on Graphics, Vol. V, No. N, October 2002.

4 · Min Gyu Choi et al.

such as navigating car-like robots with non-holonomic constraints and robots with
many degrees of freedom. In recent years, theoretical foundations for such empirical
successes have been established in some restricted cases [Barraquand et al. 1997;
Kavraki et al. 1995; Kavraki et al. 1996; Overmars and Sv̌estka 1994]. Koga et
al. [1994] combined randomized path planning and inverse kinematics to automat-
ically generate animation for human arm manipulation. To coordinate multiple
robots, Sv̌estka and Overmars [1998] combined roadmaps for multiple robots into
a roadmap for the single composite robot. Kalisiak and van de Panne [2000] pre-
sented a grasp-based motion planning algorithm in a constrained 2D environment
with designated handholds and footholds. Kindel et al. [2000] developed a path
planner for a robot with dynamic constraints and verified its effectiveness both in
real and simulated environments.

Motion editing. There have been a variety of efforts to develop motion editing
tools. Bruderlin and Williams [1995] adopted signal processing techniques to manip-
ulate animated motions. They introduced displacement mapping to alter a canned
motion clip while preserving its detailed characteristics. Witkin and Popović [1995]
proposed a motion warping technique for the same purpose. Unuma et al. [1995]
used Fourier analysis techniques to interpolate and extrapolate motion data in the
frequency domain. Rose et al. [1998] introduced the framework of “verbs and ad-
verbs” to interpolate example motions with a combination of radial basis functions
and low order polynomials. Lamouret and van de Panne [1996] discussed a variety
of issues in reusing motion clips. Rose et al. [1996] generated seamless transitions
between motion clips using spacetime constraints [Cohen 1992]. Gleicher [1998]
simplified the spacetime problem for motion retargetting, that is, adapting a pre-
existing motion of a character for another character of the same structure and
different size. Employing an optimization technique, he was able to achieve in-
teractive performance for motion editing. To accelerate this approach, Lee and
Shin [1999] presented a hierarchical displacement mapping technique based on the
multilevel B-spline approximation. They also presented a fast inverse kinematics
solver adopting the notion of an elbow circle given by Korein and Badler [1982].
Gleicher [2001] presented a method for path-based editing of existing motion data.

Example-based motion synthesis. Inspired by the work on “video texture” [Schödl
et al. 2000], a number of researches have explored a method for synthesizing a new
motion from captured motion data. Kovar et al. [2002] introduced the notion of a
motion graph to represent transitions between poses of the captured motion data:
A node of this graph represents a pose, and two nodes are connected by a directed
edge if they can be followed from one to the other in an acceptable splice. They used
branch and bound to search the graph for a motion following a sketched trajectory.
Lee et al. [2002] also represented captured motion data with a similar graph struc-
ture, and provided effective user interfaces for interactive applications. Arikan and
Forsyth [2002] built a hierarchical motion graph and applied a randomized search
to extracting motions from the graph, which satisfy user-specified constraints such
as their durations and joint angles at given keyframes. Pullen and Bregler [2002]
developed a method for enhancing roughly-keyframed animation with captured mo-
tion data. To capture the stochastic and dynamic nature of motions, Li et al. [2002]
ACM Transactions on Graphics, Vol. V, No. N, October 2002.

Planning Biped Locomotion using Motion Capture Data and Probabilistic Roadmaps · 5

developed a two-level statistical model by combining low-level linear dynamic sys-
tems with a high-level Markov process. They used the model to produce a dance
motion with variations in fine details. There are also similar researches that ex-
ploit two-level statistical models for motion synthesis [Bowden 2000; Brand and
Hertzmann 2000; Molina-Tanco and Hilton 2000].

1.3 Overview

Given start and goal positions in a virtual environment, our objective is to find a
sequence of motions of a biped figure to move from the start to the goal. Conven-
tional motion planning techniques in robotics [Hwang and Ahuja 1992; Latombe
1991] typically generate very efficient mechanical movements rather than lifelike
natural-looking motions desired in computer animation applications. On the other
hand, motion editing techniques in computer grahics [Gleicher 1998; Lee and Shin
1999; Rose et al. 1996] are not equipped with a high-level planning capability to
yield a desired motion. To rapidly plan convincing motions of the human-like char-
acter with high-level directives, we use a novel combination of probabilistic path
planning [Kavraki et al. 1996] and hierarchical displacement mapping [Lee and
Shin 1999]. Our scheme consists of the following three steps: roadmap construc-
tion, roadmap search, and motion generation. We briefly describe each of them to
give an overall view on our scheme.

Roadmap construction. Given a virtual environment, we randomly sample valid
configurations of a biped figure to construct a roadmap [Kavraki et al. 1996]. For
efficiency, we represent the configuration of the figure with that of its stance foot,
called a foothold, rather than its body posture. The roadmap can be modeled as a
directed graph whose nodes represent valid samples of the configuration space, that
is, the position and orientation of the stance foot. A pair of nodes are connected by
an edge if the biped figure can move from one node to the other with a prescribed
motion while preserving its lifelikeness.

Roadmap search. Once a roadmap is constructed, the path planning problem is
reduced to a constrained minimum-cost path problem on a directed graph, that
is, finding a minimum-cost path such that each pair of consecutive edges in the
path share a node in a posture transition graph [Badler et al. 1994]. A node of
the posture transition graph represents a posture, and two nodes are connected by
a directed edge representing a motion clip. After augmenting the roadmap with
the posture transition graph for ensuring the connectivity between motion clips,
we adopt a minimum-cost path algorithm [Dijkstra 1959] to search for two primary
pieces of information: a sequence of input motion clips and that of target footprints.

Motion generation. Our last task is to generate realistic locomotion from the
sequence of input motion clips and that of target footprints obtained from the
roadmap. In roadmap search, we have acquired an input motion sequence by simply
stitching the motion clips attached to the edges along the minimum-cost path.
Therefore, the footprints of the input motion sequence may yield some deviations
from the target footprints transformed to coincide with the footholds at the nodes
on the path. We address this problem in two steps: First, a target motion is
estimated to provide a better initial guess. Then, the hierarchical displacement

ACM Transactions on Graphics, Vol. V, No. N, October 2002.

6 · Min Gyu Choi et al.

mapping [Lee and Shin 1999] is employed with this initial guess to retarget the
input motion for the target footprints.

The remainder of the paper is organized as follows. After presenting our proba-
bilistic scheme to construct a roadmap in Section 2, we describe how we can search
a sequence of input motion clips and that of target footprints from the roadmap
in Section 3. In Section 4, we present how to generate a desired motion from
the results of roadmap search. Section 5 demonstrates experimental results of our
planning scheme. In Section 6, we discuss several issues on our scheme. Finally, we
conclude this paper and describe future work in Section 7.

2. ROADMAP CONSTRUCTION

2.1 Node Generation and Connection

A foothold f = (p,q), represents the configuration of a stance foot, where p ∈ R
3

and q ∈ S
3 denote its position and orientation, respectively. However, we will

parameterize the foothold configuration space with the 2D position (u, v) of the
stance foot and its resting yaw θ on the ground to reduce the dimensionality of
the space. Provided with (u, v, θ), we can always recover the full configuration
f = (p,q) by extracting the height and the resting pitch and roll from environment
geometry. Using parameters, u, v, and θ, we randomly sample footholds to gener-
ate the nodes of a roadmap under the assumption that each parameter value has a
uniform distribution over an interval. After sampling a foothold, we test whether it
is valid, that is, a figure can safely put a foot on the ground with this configuration.
For example, the figure cannot place its foot on water in our first and second exper-
iments. In the third experiment, the foot cannot collide with obstacles. The fourth
experiment enforces both constraints. A prescribed number of valid configurations
are sampled in this way and retained in the roadmap. In our experiments, a few
thousand samples have given high fidelity in planning a path with the roadmap.

Each newly generated node is added to the roadmap using a fast local planner,
which will be described in Section 2.2. As the number of nodes in the roadmap
increases, the time to connect a new node with the others grows rapidly. Observing
that a node can only be connected with nearby nodes, we choose the K-closest
neighbors to the new node as the candidates for connection for a given positive
integer K. A successful connection of the new node to or from one of the K-
closest nodes yields a directed edge between them. From a result in computational
geometry [Preparata and Shamos 1985], finding the K-closest neighbors requires
a non-trivial amount of computation for a large number of points. In our current
implementation, we exploit spatial partitioning techniques to speed up the process
of finding the K-closest nodes. Specifically, we keep the randomly-generated nodes
in a spatial data structure such as uniform cells. For each cell, we choose one
of its nodes as their representative. Given a new node, we first sort the cells in
the increasing order of distances from their representatives to the new node and
then choose K nodes, while visiting the cells in the same order to approximate the
K-closest neighbors.
ACM Transactions on Graphics, Vol. V, No. N, October 2002.

Planning Biped Locomotion using Motion Capture Data and Probabilistic Roadmaps · 7

2.2 Local Planner

To connect a pair of given nodes in the roadmap, the local planner checks whether
they can be connected with a motion clip, that is, whether or not the motion clip (or
its portion) can be transformed, within a specified tolerance, to have its first and last
footprints coincide with the footholds at the two nodes, respectively (See Figure 1).
Successful transformation gives a sequence of footprints. The connection between
the two nodes is discarded, if any footprint of this sequence is invalid, that is, not
safely placed on the ground. When every footprint is valid, the nodes are connected
with the edge unless the transformed motion causes any collision with obstacles.
Collision detection can be performed with efficient methods in [Gottschalk et al.
1996; Lin and Manocha 1995; Mirtich and Canny 1995].

From now, we focus on how to transform the footprints. Given a motion clip M ,
the footprint sequence f(M) is obtained by interactively marking the moments of
heel-strike and toe-off. A stance foot is held on the ground from its heel-strike time
to its toe-off time to give a footprint. Suppose that M consists of n frames and
has m footprints. Letting the j-th stance foot be on the ground for a time interval,
[tj − ∆j , tj + ∆j], we specify f(M) as follows:

f(M) = {fj |fj = (pj ,qj , tj ,∆j), 1 ≤ j ≤ m}. (1)

Here, fj represents the j-th footprint, pj ∈ R
3 and qj ∈ S

3 denote its position and
orientation, respectively, tj is the middle of its heel-strike and toe-off times, and
2∆j is its duration of stance. Moreover, tj ≤ tj+1 and 1 ≤ tj ± ∆j ≤ n for all j.

Without loss of generality, we assume that the Euclidean distance ||pk − p1||
from the first footprint f1 to the k-th footprint fk increases monotonically in the
direction from f1 to the last footprint fm as the index k increases. For a motion
with a non-monotonic footprint sequence, we can always split it into two or more
short-sized motions to satisfy this assumption. Let fk,l(M), 1 ≤ k < l ≤ m, be
the partial footprint sequence of f(M) from fk to fl, and Mk,l be its corresponding
motion segment.

Let fs = (ps,qs) and fe = (pe,qe) be the foothold configurations of the given
two nodes, respectively. Using a motion M , we are to connect them from fs to
fe. The local planner examines each footprint of f(M) successively to find a partial
footprint sequence fk,l(M) such that the difference between ||pk−pl|| and ||ps−pe||
is minimized, and that the start and last postures of its motion segment Mk,l

are similar to those of the motion M within a given tolerance [Lee et al. 2002],
respectively. Suppose that the local planner has examined up to the footprint fk1

and found fk1,l1(M) that minimizes
∣∣||pk1 − pl1 || − ||ps − pe||

∣∣ among the partial
footprint sequences starting from fk1 , whose first and last footprints satisfy the
latter condition. Then, for the next footprint fk2 at which the posture is similar to
the start posture of the motion M , we only need to examine f(M), starting from
the last footprint previously examined for determining fl1 , to find the footprint fl2
such that

∣∣||pk2 − pl2 || − ||ps − pe||
∣∣ is minimized and that the posture at fl2 is

also similar to the last posture of the motion M . Thus, by examining the partial
footprint sequences successively from the first footprint, we can choose fk,l(M)
that will be used to connect the footholds fs and fe in O(m) time. Hereafter, for
convenience of explanation, we will regard the partial footprint sequence fk,l(M)

ACM Transactions on Graphics, Vol. V, No. N, October 2002.

8 · Min Gyu Choi et al.

Adjusting position
 differences

Adjusting
orientation
differences

Aligning

s
p

ep

1p

mp

1q
s

q

m
q

eq

Fig. 1. Footprint transformation

thus chosen as the full footprint sequence f(M).
To transform the footprint sequence f(M), we first adjust the positions of the

footprints and then their orientations (See Figure 1). In order to adjust the posi-
tions, we apply a single affine transformation to the footprint positions. Initially,
we translate pj for all j to make the position p1 of the first footprint coincide with
ps. Then, to place the position pm of the last footprint as close to pe as possible,
we rotate pj for all j, at first, about the axis perpendicular to the ground plane,
and then, about the axis lying on the same plane and perpendicular to the direction
vector pe −ps. Here, both axes pass through p1. For later orientation adjustment,
we update the footprint orientation qj , 1 ≤ j ≤ m, with those rotations. In general,
pm does not lie exactly on pe with those rotations. However, they are lying on the
line connecting ps and pe. Scaling pj for all j by the factor

s =
‖ps − pe‖
‖pm − p1‖ , (2)

we can make pm lie on pe.
Now, we adjust orientation differences. Employing the slerp (spherical linear

interpolation) introduced by Shoemake [1985], we propagate the orientation differ-
ences at the two nodes, log(q−1

1 qs) and log(q−1
m qe), to the intermediate footprints

between the first and the last. To obtain a new orientation q′
j of the j-th footprint,

we linearly interpolate the differences in the orientation space with the chord length
parameterization of pj , 1 ≤ j ≤ m, and then apply the rotation to qj . That is,

q′
j = qjslerp(tj ,q−1

1 qs,q−1
m qe) (3)

where tj =
∑ j

k=2 ‖pk−pk−1‖∑ m
k=2 ‖pk−pk−1‖ for all j.

To preserve the quality of the motion clip M , we need to check whether the
ACM Transactions on Graphics, Vol. V, No. N, October 2002.

Planning Biped Locomotion using Motion Capture Data and Probabilistic Roadmaps · 9

last two non-rigid transformations can be done within given thresholds. For the
position difference, we use the ratio |1 − s| to measure how much the length of the
chord from p1 to pm is stretched or contracted, where s is given by Equation (2).
To measure the orientation difference, we employ the tight upper bound on the
angular difference of rotation in the interpolation given in Equation (3), that is,
max(‖ log(q−1

1 qs)‖, ‖ log(q−1
m qe)‖). If both the position and orientation differences

are within their threshold values, we achieve a successful transformation. In our
experiments, the threshold values for the position and orientation differences were
chosen empirically as 0.25 and 0.25π, respectively.

2.3 Cost Function

An edge of a directed graph is specified by an ordered pair of nodes called tail and
head nodes, respectively. Each edge of the roadmap has its cost that measures the
effort for a character to move from the tail node to the head node with the tagged
motion clip. Searching the roadmap for a path is guided by the edge costs. With
the well-designed edge costs, an intended sequence of motions can be obtained by
finding the minimum-cost path from the start node to the goal in the roadmap. Our
cost function of each edge incorporates a set of factors that measure the motion
clip in diverse perspectives.

One of the most intuitive and important factors is the distance for a character to
travel. For obtaining the distance cp

d to travel with a motion clip, we sum up the
distances between every pair of adjacent footprints, that is, cp

d =
∑m

j=2 ‖pj−pj−1‖,
where pj , 1 ≤ j ≤ m, is the position of the j-th footprint. A somewhat similar and
slightly different factor ct

d is the number of frames of a motion clip. ct
d is a measure

in the time domain whereas cp
d in the space domain. Thus, we incorporate both

terms in a single function,

cd = cp
d + wb · ct

d, (4)

with a user-provided weighting coefficient wb.
In Section 2.2, we have employed the local planner to adapt a live-captured

motion to the footholds at a pair of nodes of each edge. The adaptation is required
to adjust both the position and orientation differences between the footholds and
the pair of extreme footprints of the motion clip. These differences indicate how
much the motion clip is degraded to satisfy the foothold constraints. In order to
preserve the lifelike nature of the captured motion clips, we need to minimize their
adaptation while satisfying the constraints. Let cp

r and co
r be the position and

orientation differences, respectively. To measure the degree of adaptation, we use
a weighted sum of the both differences,

cr = cp
r + wm · co

r, (5)

where wm is a weighting factor addressing the metric difference between the position
and the orientation.

Besides distance and adaptation costs, we may also consider user’s preference
to certain motion clips. For example, “walking” motions are more desirable than
“broad jumping” in a normal case. To incorporate such preference, we consider
a preference cost cp that is reciprocal to user’s preference. Then, the final cost
function for an edge is defined as a weighted sum of the former two costs multiplied

ACM Transactions on Graphics, Vol. V, No. N, October 2002.

10 · Min Gyu Choi et al.

by the last cost:

c = cp · (cd + wr · cr), (6)

where wr is a user-controllable weighting factor. In addition to the above terms,
other factors such as obstacles along the edge may also be incorporated into the
cost function. In our experiments, the weighting factors wb, wm and wr were chosen
empirically as 0.5, 1.0 and 10.0, respectively.

2.4 Enhancement

If a sufficiently large number of nodes were generated, then the roadmap would
uniformly cover almost entire regions of the c-space. However, with a moderate
number of nodes, uniform sampling does not guarantee that the roadmap is con-
nected well in “difficult” regions of the c-space such as narrow passages [Kavraki
and Latombe 1994; Kavraki et al. 1996]. We adopt a heuristic method [Kavraki
and Latombe 1994] to facilitate better interconnection. For each node v belonging
to the node set V of the roadmap, a probability density function is defined by

P (v|V) =
1

iv + ov + 1
/

∑
u∈V

1
iu + ou + 1

, (7)

where iv is the number of edges incident to v, and ov is the number of edges incident
from v. The underlying idea of this function is based on the fact that a poorly-
interconnected node lies in a difficult region with a high probability and thus needs
more samples for better connectivity. We choose a node v from the node set V
of the roadmap with probability P (v|V) to introduce an additional node near the
node v. The number of additional nodes between one third and one half of that of
initial nodes is known empirically to give a good performance [Kavraki et al. 1996;
Kavraki and Latombe 1994; Kavraki et al. 1996].

3. ROADMAP SEARCH

In this section, we describe how to search the roadmap for a minimum-cost path,
that gives a sequence of desired motions and that of target footprints, provided with
start and goal configurations. We will further refine the target footprints using the
local planner presented in Section 2.2.

Before moving on to roadmap search, we start with describing a posture transition
graph [Badler et al. 1994] since it plays a crucial role in ensuring connectivity
between motion clips. A node of the posture transition graph represents a valid
posture of a biped figure, and a directed edge represents a motion clip. If the motion
clip of an edge can be connected to that of another edge, then the head node of the
former edge coincides with the tail of the latter (See Figure 2(a)). In addition, each
edge is tagged with a footprint sequence obtained from the corresponding motion
clip. We employ techniques [Lee and Shin 1999; Rose et al. 1996] for generating
the transitions among motion clips to build the posture transition graph.

3.1 Path Finding

Given start and goal footholds, fx and fy, our objective here is to find a sequence of
input motion clips and the target footprints, which can be done in two steps: We
first add two nodes x and y corresponding to fx and fy to the roadmap and then
ACM Transactions on Graphics, Vol. V, No. N, October 2002.

Planning Biped Locomotion using Motion Capture Data and Probabilistic Roadmaps · 11

(c) Augmented roadmap

(a) Posture transition graph

Right foot
 forward

Stand

Walk rightWalk left

Walk loop

Broad jump

Walk stop

Walk start

(b) Roadmap

Fig. 2. Augmented roadmap with posture transition graph

search the roadmap for a minimum-cost path from x to y. When any of those two
nodes cannot be connected to the roadmap with our local planner, we employ a
random walk to connect it to the roadmap [Barraquand and Latombe 1991].

Searching the roadmap needs special care to select motion clips that can be
spliced. Suppose that we have traversed the roadmap to arrive at the node v via
an edge e incident to v. To go further from v, we take another edge e′ that is
incident from the node v and whose corresponding motion clip can be stitched with
that of the edge e. At each node v encountered, we need to memorize the one-level
history, that is, the incident edge to the node v used for entering. We also need to
refer to the posture transition graph to check if the motion tagged on e can make
transition to that on e′ via a common posture. Therefore, we cannot directly apply
a minimum-cost path algorithm [Dijkstra 1959] to the roadmap.

Let G(V,E) be the directed graph representing our roadmap. To avoid both
memorizing the history and referring to the posture transition graph during path
search, we transform G(V,E) into a new directed graph G′(V ′, E′) so that any
connected path of G′ yields a feasible motion sequence. Suppose that the posture
transition graph has k nodes, ui, 1 ≤ i ≤ k, each representing a posture. Then,
using the nodes of the posture transition graph, we split every node v of G(V,E)
to make a set of k nodes, {(v, ui)|i = 1, 2, · · · , k} of G′. Each node (v, ui) possesses
both the posture at the node ui of the posture transition graph and the foothold at
the node v of the roadmap G (See Figure 2). A pair of nodes, (v1, ui) and (v2, uj) of
G′ admit a directed edge from (v1, ui) to (v2, uj) if and only if the motion tagged on
the edge from v1 to v2 in G is also tagged on the edge from ui to uj in the posture
transition graph. Since each node of G′ is associated with a posture as well as a
foothold, any pair of edges in G′ that are incident to and from a node guarantee
that the motion clip tagged on the edge incident to the node can make transition
to that on the other, and thus any connected path in G′ provides a feasible motion
sequence. Consequently, we can directly apply the minimum-cost path algorithm
to the graph G′. Since G′ has k|V | nodes and |E| edges, we can find a sequence of
motion clips and their target footprints in O(k|V | log k|V | + |E|) time.

If path planning fails frequently, we sample the configuration space more densely
ACM Transactions on Graphics, Vol. V, No. N, October 2002.

12 · Min Gyu Choi et al.

Fig. 3. A sequence of footholds is iteratively straightened up.

to add new nodes. The roadmap can be expanded incrementally on the fly with our
local planner. When a small portion of the environment changes, new nodes can
be sampled from the same portion of the new environment while removing those
nodes lying on that portion of the old environment. Another kind of failure can
occur due to lack of right motion clips for connection. We empirically handled this
problem in our experiments by choosing a sufficiently large number as a threshold
to discriminate the latter failure from the former.

3.2 Footprint Refining

Consider a target footprint sequence that has been obtained from the motion clips
tagged on the edges of the path in the roadmap. Since we have sampled the
footholds of the roadmap randomly, the target footprints may reveal some arti-
facts: The character may walk in zigzag along the path. In addition, as explained
in Section 2.2, the footprint sequence along each edge may differ from that of the
original motion clip within a specified tolerance. This difference may vary from
edge to edge. To reduce such artifacts due to random sampling, we first modify the
target footholds slightly along the path by smoothing them, and then adjust the
target footprints locally to make them more similar to the original ones.

Path straightening. To straighten up a zigzag-shaped moving path, we consider
the target footholds as data points on a curve in R

3 × S
3 and apply a smoothing

filter developed for motion data. While smoothing the target footholds, we change
the motion M previously attached on an edge using the same type of motions as
M . Here, the same type of motions are assumed to have the same start and last
postures so that the connectivity of the motions at each foothold can be guaranteed.
For example, “30-degree right turn” may be replaced by “15-degree right turn” or
“straight walk” as the path is becoming straightened. Iteratively smoothing the
target footholds and changing the motions attached on the edges, we gradually
straighten up the zigzag-shaped moving path (See Figure 3).

Let fj = (pj ,qj) ∈ R
3 × S

3, 1 ≤ j ≤ m, be the configurations of the target
footholds. To smooth both position and orientation in a coherent way, we employ
the general filtering scheme for motion data [Lee and Shin 2001; 2002]. In partic-
ular, we adopt a binomial filter mask (1

16 , 4
16 , 6

16 , 4
16 , 1

16). For position smoothing,
the filtering scheme yields a function F(·) that takes the weighted average of the
adjacent positions along the path with the filter mask:

p′
j = F(pj) =

1
16

(pj−2 + 4pj−1 + 6pj + 4pj+1 + pj+2).

For orientation smoothing, the filtering scheme transforms the orientation data into
ACM Transactions on Graphics, Vol. V, No. N, October 2002.

Planning Biped Locomotion using Motion Capture Data and Probabilistic Roadmaps · 13

jf '

jf
j-1f

j+1f

Fig. 4. Conceptual view of path straightening

Fig. 5. A sequence of footprints is repeatedly refined. The number of iterations is 0 (left), 2
(middle), and 8 (right).

their analogies in a vector space, applies a filter mask on them, and then transforms
the displacement back to the orientation space:

q′
j = H(qj) = qj exp(F(vj) − vj) (8)

= qj exp(
1
16

(−ωj−2 − 5ωj−1 + 5ωj + ωj+1)),

where vj =
∑j−1

i=0 log(ωi) and ωj = log((qj)−1qj+1) ∈ R
3. For detailed derivation,

see the results in [Lee and Shin 2002].
While smoothing each foothold configuration successively along the path, we also

ensure the feasibility of the path with the new foothold. Suppose that we are now
computing the j-th foothold configuration. We check if the foothold configuration
f ′j is valid and if f ′j can be connected safely from fj−1 and to fj+1 using the local
planner (See Figure 4). If both conditions are satisfied, we replace the foothold
configurations fj with f ′j . Otherwise, we linearly interpolate fj and f ′j with a given
weighting factor. If the interpolated configuration does not satisfy the above two
conditions, we lower the weighting factor to obtain a new configuration that is closer
to fj . This process is repeated a few times to obtain a configuration satisfying the
conditions. If we fail to find such a configuration after a given number of iterations,
we take fj itself as the filtered foothold f ′j .

Difference smoothing. The second step of footprint refining examines the local
window at each footprint in sequence, which covers a small portion of the footprint
sequence, and evaluates how much it is different from the original footprint sequence
of the corresponding portion of the input motion data. To propagate the difference
smoothly along the path, we present a local refining scheme that adjusts each
footprint successively by referring to the neighboring footprints of the original,

ACM Transactions on Graphics, Vol. V, No. N, October 2002.

14 · Min Gyu Choi et al.

1v

2v

mf
Original footprints
in the motion clip

1v

2v

Target footprints
after refinement

Transforming
 and its neigbors

with respect to and

1v f

2v

Target footprints
before refinment

mf ' f ' = f 'm

mf
2v1v

Fig. 6. The conceptual view of difference smoothing

while ensuring the validity of the adjusted footprints. Applying the local refining
scheme to every footprint in sequence back and forth repeatedly along the path, we
propagate the difference rather uniformly (See Figure 5).

We adopt the local planner described in Section 2.2 for smoothing the difference.
For each footprint f in the target footprint sequence, we take the corresponding foot-
print fm and its two adjacent footprints in the original motion clip (See Figure 6).
To apply the local planner to fm together with its two neighboring footprints, we
conceptually interpret the two footprints adjacent to the footprint f as the footholds
representing two hypothetical nodes, v1 and v2 of the roadmap, respectively. The
planner adjusts the footprint sequence composed of the three footprints, that is, the
footprint fm and its two neighbors, with respect to the footholds in the hypothetical
nodes v1 and v2 to obtain a new footprint f ′.

However, we have difficulty in refining a footprint f when f is shared by the
two footprint sequences of the motion clips A and B. Then, fm is not only the last
footprint of the motion A but also the first footprint of the motion B. Thus, each of
the motion clips has only one footprint adjacent to fm. To apply our local refining
scheme to f , we take fm and the two neighboring footprints after transforming the
original footprint sequence of the motion B such that its first footprint coincides
with the last footprint of the motion A.

During the local refining, instead of simply replacing the original footprint f with
the new one f ′, we linearly interpolate them with a given weighting factor. If the
interpolated configuration is not valid, we lower the weighting factor to obtain a
new candidate that is closer to the original footprint f . This process is repeated a
few times to obtain a valid one. If we fail to find a valid one after a given number
of iterations, we take f itself as the footprint.
ACM Transactions on Graphics, Vol. V, No. N, October 2002.

Planning Biped Locomotion using Motion Capture Data and Probabilistic Roadmaps · 15

4. MOTION GENERATION

With the sequence of input motion clips and that of target footprints available,
we finally generate a biped locomotion from the start position to the goal in this
section. Interpreting each of those footprints as a variational constraint over a
time interval [Gleicher 1998], we can formulate this task as a motion retargetting
problem [Gleicher 1998; Lee and Shin 1999; Rose et al. 1996]. For this problem, it is
well-known that the initial body trajectory is very important for the convergence of
numerical optimization and the quality of the result. The body trajectory is usually
represented by the position and orientation of the root segment. By analyzing the
input motion sequence and the target footprints, we estimate the body trajectory of
the target motion. Together with the joint angles of the motion clips, this yields an
initial guess for the target motion at every frame. Finally, we apply the hierarchical
displacement mapping [Lee and Shin 1999] with this initial guess to retarget the
input motion sequence for the target footprints.

Since motion retargetting is well-described in [Gleicher 1998; Lee and Shin 1999],
we will concentrate on how to estimate the body trajectory of the target motion
for deriving the initial guess. For the input motion sequence A, let f(A) and b(A)
denote its footprint sequence and body trajectory, respectively. For the unknown
target motion sequence B, f(B) and b(B) can be defined similarly. Here, our
objective is to estimate the target body trajectory b(B). B is implicitly specified
by f(B) together with A. Suppose that A and f(A) consist of n frames and m
footprints, respectively. Tracing the posture of the root segment in every motion
clip in sequence, we can easily acquire b(A) for all frames of A.

In order to estimate b(B), we exploit a relationship between b(A) and f(A) (See
Figure 7). We first derive a reference trajectory r(A) of the motion sequence A
from its footprints f(A), and then compute its displacement d(A) to b(A),

d(A) = b(A) � r(A), (9)

where r(A) and the operator � will be defined later. Notice that each of b(A),
d(A), and r(A) consists of vector and orientation components. Assuming that A
and B are similar within a small tolerance, we have

b(B) = d(B) ⊕ r(B) ≈ d(A) ⊕ r(B) (10)
= (b(A) � r(A)) ⊕ r(B).

With b(A) directly picked up from the original motion clips, we need to compute
reference trajectories r(A) and r(B) to determine b(B). Provided with f(A) =
{fj |fj = (pj ,qj , tj ,∆j), 1 ≤ j ≤ m}, the body center (the center of the root seg-
ment) is expected to lie above the “mid-posture” of every pair of consecutive foot-
prints. Let the mid-posture of fj and fj+1 be

(p̄j , q̄j) = (
1
2
(pj + pj+1),qj(q−1

j qj+1)
1
2) (11)

at t̄j = � tj+tj+1
2 �, 1 ≤ j < m. Interpolating those mid-postures piecewisely for each

adjacent pair in sequence, we obtain a continuous reference trajectory for A over
the interval [t̄1, t̄m−1] [Shoemake 1985]. We resample the trajectory at every frame
in [t̄1, t̄m−1] to have r(A) = {(pr

i ,q
r
i) ∈ R

3 × S
3|t̄1 ≤ i ≤ t̄m−1}. r(B) can also be

obtained in the same way from the target footprint sequence f(B).
ACM Transactions on Graphics, Vol. V, No. N, October 2002.

16 · Min Gyu Choi et al.

1f

2f
3f

4f

5f

b(A)

b(A), r(A)

)(Ad

)(Br

r(A) r(B)

b(B) = d(A)⊕r(B)d(A) = b(A)⊕r(A)

Fig. 7. Body trajectory estimation

We now compute the displacement map d(A) = b(A) � r(A). An ordered pair
(pr

i ,q
r
i), t̄1 ≤ i ≤ t̄m−1, of position and orientation components of r(A) specifies

a rigid transformation that maps a point u in R
3 to a point u′ in R

3, that is,
u′ = qr

i u(qr
i)

−1 + pr
i . Here, the vector (x, y, z) = u ∈ R

3 is considered as a purely
imaginary quaternion (0, x, y, z) ∈ S

3. Given b(A) = {(pb
i ,q

b
i) ∈ R

3×S
3|1 ≤ i ≤ n}

and r(A) = {(pr
i ,q

r
i) ∈ R

3 × S
3|t̄1 ≤ i ≤ t̄m−1}, we define their displacement map

d(A) = {(ui,vi) ∈ R
3×R

3|t̄1 ≤ i ≤ t̄m−1} measured in the local coordinate system
for r(A) as follows:

d(A) = b(A) � r(A) (12)

= {(pb
i ,q

b
i) � (pr

i ,q
r
i)|t̄1 ≤ i ≤ t̄m−1}

=
{(

(qr
i)

−1(pb
i − pr

i)q
r
i , log

(
(qr

i)
−1qb

i

))|t̄1 ≤ i ≤ t̄m−1

}
.

Finally, letting r(B) = {(pi,qi)|t̄1 ≤ i ≤ t̄m−1}, we obtain the body trajectory
b(B):

b(B) = d(A) ⊕ r(B) (13)
= {(ui, vi) ⊕ (pi,qi)|t̄1 ≤ i ≤ t̄m−1}
=

{(
qiuiq−1

i + pi,qi exp(vi)
)|t̄1 ≤ i ≤ t̄m−1

}
.

b(B) is defined over frames from t̄1 to t̄m−1. To extend b(B) over all frames, we take
the portion of b(A) between 1 and t̄1, and stitch it with b(B) such that its position
and orientation coincide with those of b(B) at t̄1 through a rigid transformation.
We can obtain b(B) from t̄m−1 to n symmetrically.
ACM Transactions on Graphics, Vol. V, No. N, October 2002.

Planning Biped Locomotion using Motion Capture Data and Probabilistic Roadmaps · 17

5. EXPERIMENTAL RESULTS

Our planning scheme is implemented in C++ as an Alias|Wavefront MAYAR plug-
in on top of the Microsoft Windows XP. Experiments are performed on an Intel
PentiumR PC (PIII 800 MHz processor and 512 MB memory) with commercially
available motion clips. We use a human model of 43 DOFs: 6 DOFs for the pelvis
position and orientation, 3 DOFs for the spine, 7 DOFs for each limb, and 3 DOFs
for each of the neck and head.

Our first experiment is for planning a walking motion. Figure 8 exhibits the
resulting motion in an island with three puddles, in which foot planting is not
allowed at any point on water. We have used the posture transition graph with
a set of live-captured motion clips for walking, which is similar to Figure 2(a).
Specifically, we have prepared 13 motion clips, such as “walk start”, “walk stop”,
“walk straight”, “turn left”, “turn right”, and several curved walking motions.
The terrain is represented as a NURBS surface of which control points are placed
on a regular grid, and their y-coordinates (heights) are perturbed above or be-
low the sea level. By setting the sea level to zero, a valid footprint has a non-
negative height. For collision avoidance, we use a heuristic method that detects
a collision when the height of the swing foot lies below the environment at any
frame. The flow of our planning scheme is visualized in the movie clips available at
http://cg.kaist.ac.kr/~min/motion_planning.

The second experiment exhibits the capability of our planning scheme to cope
with a difficult environment by using various motions. As shown in Figure 9, the
terrain has complex features such as a crevice and a small stream. Motions such as
“broad jumping” and “running” are added to the motion repertoire. The running
motion is given a preference over the others when a local geometry has a small height
variation. We can observe that such motions are properly used for overcoming the
environment.

The third experiment is for an environment with obstacles. As illustrated in
Figure 10, the environment is a room with several pieces of furniture as obstacles.
For collision detection, we employ a similar method in [Gottschalk et al. 1996].
A pair of nodes are connected with an edge representing a motion clip when the
conservative bounding volume swept by the motion clip does not intersect with the
rectangular bounding box of any obstacle.

The final experiment is to demonstrate the effectiveness of our planning scheme
in a highly-constrained environment. As illustrated in Figure 11, we process a
sequence of queries in a dungeon consisting of three distinct regions: The first region
is a room with several pieces of old furniture, some of which are placed near to each
others to form narrow passages. The second region is a moat with irregularly-
distributed marble columns. The third region is a burial chamber. To navigate a
character through this dungeon, we have prepared a total of 58 motions such as
forward walking, lateral walking, backward walking, jumping, turning and hurdling.
The responses of the first and third queries show that lateral walking and turning are
properly used to pass through narrow passages. For the second query, low preference
to jumping results in a motion sequence including jumping and curved walking
rather than jumping only. For the fourth query, backward walking is selected at
the end of the narrow passage because there is not enough space to turn around.

ACM Transactions on Graphics, Vol. V, No. N, October 2002.

18 · Min Gyu Choi et al.

Fig. 8. Simple terrain

Fig. 9. Complex terrain

The fifth query gives rise to hurdling an obstacle to reach the exit of the room.
The final query is to find a sequence of motions over the marble columns, which
are not connected with each others and irregularly distributed. Unlike traditional
path planning schemes for human navigation [Bandi and Thalmann 1998; Kuffner
and Latombe 1999; Noser et al. 1995; Reich et al. 1994], our planning scheme seeks
a sequence of discrete footprints rather than a continuous moving path. Thus, such
a sequence can be obtained successfully.
ACM Transactions on Graphics, Vol. V, No. N, October 2002.

Planning Biped Locomotion using Motion Capture Data and Probabilistic Roadmaps · 19

Fig. 10. Room with furniture

Table I summarizes the input data and the results of our experiments. For each
example, our path planner performs three major steps: roadmap construction,
roadmap search, and motion generation. The running time of the roadmap search
shows its dependency on the number of nodes and that of edges in the roadmap.
In each of the examples, the roadmap construction time dominates the others as
expected. The construction time is a function of motion clips and environment
geometry. The motion generation time roughly depends on the number of frames
generated. After constructing the roadmap, we can produce more than 1000 frames
per second in all experiments. Since the roadmap construction can be considered
as preprocessing, our motion planning scheme exhibits interactive performance in
our experiments.

6. DISCUSSION

Potential field planner vs. Roadmap planner. There have been two major streams
of randomized techniques for path planning: randomized path planning with poten-
tial fields [Barraquand and Latombe 1991; Kalisiak and van de Panne 2000; Koga
et al. 1994] and probabilistic path planning with roadmaps [Barraquand et al. 1997;
Kavraki et al. 1996; Kavraki and Latombe 1994; Kavraki et al. 1995; Kavraki et al.
1996; Overmars and Sv̌estka 1994]. A randomized path planning scheme employs
a potential field to guide the search for a path to the goal while avoiding the obsta-
cles. To escape from a local minimum in the potential field, this scheme is usually
equipped with random walks. A probabilistic path planning scheme constructs a
roadmap by random sampling to guide the path search. In the probabilistic scheme,
most heavy computations are done in the preprocessing phase, that is, roadmap
construction. Once a roadmap is constructed, a path between any pair of configura-
tions can be found very efficiently. Therefore, the roadmap method is particularly
effective for handling repetitive point-to-point queries in a tightly-constrained static

ACM Transactions on Graphics, Vol. V, No. N, October 2002.

20 · Min Gyu Choi et al.

(a) The environment

(b) The 1st query (c) The 2nd query

(d) The 3rd query (e) The 4th query

(f) The 5th query (g) The 6th query

Fig. 11. A sequence of motion planning queries in a dungeon

ACM Transactions on Graphics, Vol. V, No. N, October 2002.

Planning Biped Locomotion using Motion Capture Data and Probabilistic Roadmaps · 21

Table I. Performance data. N and M are the numbers of initial nodes sampled and the additional

nodes for enhancement, respectively. E is the number of edges connected. Timing data give CPU
time in seconds.

Exp. 1 Exp. 2 Exp. 3
of motion clips 13 29 13

roadmap
construction

N (# of initial nodes) 2000 3000 2000
M (# of additional nodes) 1000 1500 1000
K (# of candidates) 100 100 100
E (# of edges) 88703 266419 87617
of edges/node 28.81 59.20 29.21
construction time 4.250 99.050 38.880

roadmap
search

path finding time 0.020 0.250 0.060
of motion clips on a path 5 28 14
of iterations in refining 4 4 4
footprint refining time 0.020 0.120 0.080

motion
generation

of frames 197 1139 467
initial estimation time 0.010 0.020 0.010
retargeting time 0.090 0.670 0.250
retargeting time/frame 0.001 0.001 0.001

total time (excluding preprocessing) 0.140 1.060 0.400
average time/frame (excluding preprocessing) 0.001 0.001 0.001

Exp. 4
of motion clips 58

roadmap
construction

N (# of initial nodes) 3000
M (# of additional nodes) 1500
K (# of candidates) 100
E (# of edges) 122975
of edges/node 27.33
construction time 104.610

query 1st 2nd 3rd 4th 5th 6th

roadmap
search

path finding time 0.030 0.030 0.030 0.030 0.030 0.030
of motion clips on a path 7 5 9 4 8 11
of iterations in refining 4 4 4 4 4 4
footprint refining time 0.020 0.020 0.030 0.010 0.030 0.060

motion
generation

of frames 286 181 304 131 293 365
initial estimation time 0.010 0.010 0.010 0.010 0.010 0.010
retargeting time 0.110 0.060 0.110 0.050 0.110 0.130
retargeting time/frame 0.001 0.001 0.001 0.001 0.001 0.001

total time (excluding preprocessing) 0.170 0.120 0.180 0.100 0.180 0.230
average time/frame (excluding preprocessing) 0.001 0.001 0.001 0.001 0.001 0.001

environments as shown in Figure 11.

Postures vs. Footholds. A reasonable human model in computer graphics has
about 40 degrees of freedom. Planning motions with such high degrees of freedom
directly in the configuration space is still computationally demanding even with
probabilistic motion planning techniques. Instead of sampling the configuration
space of postures, we sample that of footholds while accessing motion clips via
edges incident to and from nodes representing footholds. Although this makes
the roadmap search a little complicated, the dimensionality of the configuration
space is reduced greatly, and thus a moderate number of samples reflects well the
connectivity of the configuration space. This enables us to search a minimum-
cost path at interactive performance. Alternatively, one may prefer the pelvis
configuration for the same purpose. However, unlike feet and hands, the pelvis
is rarely used to interact with external environments. Thus, the footholds make
it easier to plan motions such as jumping over crevice and walking over stepping
stones.

ACM Transactions on Graphics, Vol. V, No. N, October 2002.

22 · Min Gyu Choi et al.

Regular sampling vs. Random sampling. For a configuration space of low dimen-
sion such as our foothold space, regular sampling is a possible choice to construct
a roadmap. In regular sampling, all grid points in the free configuration space are
sampled as the nodes to guarantee their uniform coverage of the space. However,
for an environment with dense obstacles, a grid of high resolution is required to
ensure a good connectivity of the roadmap. In this case, random sampling yields
a well-connected roadmap with a moderate number of samples due to the heuris-
tic scheme for additional sampling [Barraquand et al. 1997; Kavraki et al. 1995;
Kavraki et al. 1996] as given in Section 2.4. Moreover, compared to regular sam-
pling, random sampling requires much less samples to achieve high fidelity in the
sense that the roadmap covers uniformly almost entire regions of the configuration
space [Barraquand et al. 1997; Kavraki et al. 1995; Kavraki et al. 1996].

7. CONCLUSIONS

Animation scripts or interactive systems require high-level directives for locomotion
of a character on a virtual environment. To facilitate rapid motion prototyping
and task-level motion generation for interactive applications, this paper presents
a new scheme for planning a natural-looking motion for a human-like biped figure
to move from a given start position to a goal with a set of prescribed motion
clips. Combining probabilistic path planning [Kavraki et al. 1996] and hierarchical
displacement mapping [Lee and Shin 1999], we find a sequence of motion clips and
that of target footprints from the start to the goal, and then retarget the motion
sequence to follow the target footprint sequence. Given a rich set of motion clips,
our scheme enables a human-like figure to move over uneven terrain with a variety of
motions, such as running on flat terrain, walking over stepping stones, and jumping
over a crevice.

Our motion planner produces locomotion guided by the footholds at the nodes of
the roadmap. We may use other features such as “handholds” [Kalisiak and van de
Panne 2000] as well to produce different kinds of motions, for example, crossing
a river with a rope and climbing a rock, sitting on a chair, and so on. Currently,
our scheme is for motion planning of a single character in a static environment.
We hope to extend our work for dynamic obstacles and multiple characters in
future. Our scheme would handle dynamic obstacles by repeating motion planning
at a regular interval with the static obstacles conservatively bounding them. To
cope with multiple characters, we may employ a theoretical result [Sv̌estka and
Overmars 1998] that combines roadmaps for multiple robots into the roadmap for
the single composite robot consisting of all the robots. Finally, we are interested in
a scalability issue. With a large set of motion clips, there could be a large number
of edges in the roadmap, so that path finding would also be time-consuming. To
accelerate path finding in such a case, we may reduce the number of multi-edges
connecting the same pair of nodes in the roadmap by clustering them according
to their corresponding motion types and filtering them during roadmap search to
finally choose a motion.

ACKNOWLEDGMENTS

We wish to thank the anonymous reviewers for their comments and suggestions.
ACM Transactions on Graphics, Vol. V, No. N, October 2002.

Planning Biped Locomotion using Motion Capture Data and Probabilistic Roadmaps · 23

REFERENCES

Arikan, O. and Forsyth, D. 2002. Interactive motion generation from examples. ACM Trans-
actions on Graphics (Proc. SIGGRAPH 2002) 21, 3, 483–490.

Badler, N. I., Bindiganavale, R., Granieri, J. P., Wei, S., and Zhao, X. 1994. Posture
interpolation with collision avoidance. In Proc. Computer Animation ’94. 13–20.

Bandi, S. and Thalmann, D. 1998. Space discretization for efficient human navigation. Computer
Graphics Forum 17, 3, 195–206.

Barraquand, J., Kavraki, L., Latombe, J.-C., Li, T. Y., Motwani, R., and Raghavan, P.

1997. A random sampling scheme for path planning. Int. J. Robotics Research 16, 6, 759–774.

Barraquand, J. and Latombe, J.-C. 1991. Robot motion planning: A distributed representation
approach. Int. J. Robotics Research 10, 6, 628–649.

Boulic, R., Thalmann, N. M., and Thalmann, D. 1990. A global human walking model with
real-time kinematic personification. The Visual Computer 6, 6, 344–368.

Bowden, R. 2000. Learning statistical models of human motion. In IEEE Workshop on Human
Modeling, Analysis and Synthesis, CVPR2000.

Brand, M. and Hertzmann, A. 2000. Style machines. Computer Graphics (Proc. SIGGRAPH
2000) 34, 183–192.

Bruderlin, A. and Calvert, T. W. 1989. Goal-directed animation of human walking. Computer
Graphics (Proc. SIGGRAPH ’89) 23, 233–942.

Bruderlin, A. and Williams, L. 1995. Motion signal processing. Computer Graphics (Proc.
SIGGRAPH ’95) 29, 97–104.

Chung, S.-K. and Hahn, J. K. 1999. Animation of human walking in virtual environments. In
Proc. Computer Animation ’99. 4–15.

Cohen, M. F. 1992. Interactive spacetime control for animation. Computer Graphics (Proc.
SIGGRAPH ’92) 26, 293–302.

Dijkstra, E. W. 1959. A note on two problems in connection with graphs. Numerische Mathe-
matik 1, 269–271.

Gleicher, M. 1998. Retargetting motion to new characters. Computer Graphics (Proc. SIG-
GRAPH ’98) 32, 33–42.

Gleicher, M. 2001. Motion path editing. In Proc. ACM Symp. Interactive 3D Graphics. 195–202.

Gottschalk, S., Lin, M. C., and Manocha, D. 1996. OBBtree: A hierarchical structure for
rapid interference detection. Computer Graphics (Proc. SIGGRAPH ’96) 30, 171–180.

Hodgins, J. K. and Pollard, N. S. 1997. Adapting simulated behaviors for new characters.
Computer Graphics (Proc. SIGGRAPH ’97) 31, 153–162.

Hodgins, J. K., Wooten, W. L., Brogan, D. C., and O’Brien, J. F. 1995. Animating human
athletics. Computer Graphics (Proc. SIGGRAPH ’95) 29, 75–78.

Hwang, Y. and Ahuja, N. 1992. Gross motion planning – a survey. ACM Computing Sur-
veys 24, 3, 219–291.

Kalisiak, M. and van de Panne, M. 2000. A grasp-based motion planning algorithm for character

animation. In Proc. CAS ’2000 – Eurographics Workshop on Simulation and Animation. 43–58.

Kavraki, L., Kolountzakis, M., and Latombe, J.-C. 1996. Analysis of probabilistic roadmaps
for path planning. In Proc. IEEE Int. Conf. Robotics and Automation. 3020–3025.

Kavraki, L. and Latombe, J.-C. 1994. Randomized preprocessing of configuration space for fast
path planning. In Proc. IEEE Int. Conf. Robotics and Automation. 2138–2145.

Kavraki, L., Latombe, J.-C., Motwani, R., and Raghavan, P. 1995. Randomized query pro-
cessing in robot motion planning. In Proc. 27th Annual ACM Symp. Theory of Computing

(STOC). 353–362.

Kavraki, L., Sv̌estka, P., Latombe, J.-C., and Overmars, M. H. 1996. Probabilistic roadmaps

for path planning in high dimensional configuration space. IEEE. Trans. Robotics and Automa-
tion 12, 4, 566–580.

Kindel, R., Hsu, D., Latombe, J.-C., and Rock, S. 2000. Kinodynamic motion planning amidst
moving obstacles. In IEEE Int. Conf. Robotics and Automation. 537–543.

ACM Transactions on Graphics, Vol. V, No. N, October 2002.

24 · Min Gyu Choi et al.

Ko, H. and Badler, N. I. 1996. Animating human locomotion with inverse dynamics. IEEE
Computer Graphics and Applications 16, 2, 50–29.

Ko, H. and Cremer, J. 1995. VRLOCO: Real-time human locomotion from positional input
streams. Presence: Teleoperations and Virtual Environments 5, 4, 1–15.

Koga, Y., Kondo, K., Kuffner, J., and Latombe, J.-C. 1994. Planning motions with intentions.

Computer Graphics (Proc. SIGGRAPH ’94) 28, 395–408.

Korein, J. U. and Badler, N. I. 1982. Techniques for generating the goal-directed motion of
articulated structures. IEEE CG&A 2, 9, 71–81.

Kovar, L., Gleicher, M., and Pighin, F. 2002. Motion graphs. ACM Transactions on Graphics
(Proc. SIGGRAPH 2002) 21, 3, 473–482.

Kuffner, J. and Latombe, J.-C. 1999. Fast synthetic vision, memory, and learning for virtual
humans. In Proc. Computer Animation ’99. 118–127.

Lamouret, A. and van de Panne, M. 1996. Motion synthesis by example. In Proc. CAS ’96 –
Eurographics Workshop on Simulation and Animation. 199–212.

Laszlo, J., van de Panne, M., and Fiume, E. 1996. Limit cycle control and its application
to the animation of balancing and walking. Computer Graphics (Proc. SIGGRAPH ’96) 30,
155–162.

Latombe, J.-C. 1991. Robot Motion Planning. Kluwer Academic Publishers.

Lee, J., Chai, J., Reitsma, P., Hodgins, J. K., and Pollard, N. 2002. Interactive control
of avartars animated with human motion data. ACM Transactions on Graphics (Proc. SIG-
GRAPH 2002) 21, 3, 491–500.

Lee, J. and Shin, S. Y. 1999. A hierarchical approach to interactive motion editing for human-like
figures. Computer Graphics (Proc. SIGGRAPH ’99) 33, 395–408.

Lee, J. and Shin, S. Y. 2001. A coordinate-invariant approach to multiresolution motion analysis.
Graphical Models 63, 2, 87–105.

Lee, J. and Shin, S. Y. 2002. General construction of time-domain filters for orientation data.
IEEE Trans. Visualization and Computer Graphics 8, 2, 119–128.

Li, Y., Wang, T., and Shum, H.-Y. 2002. Motion texture: A two-level statistical model for
character motion synthesis. ACM Transactions on Graphics (Proc. SIGGRAPH 2002) 21, 3,
465–472.

Lin, M. C. and Manocha, D. 1995. Fast interference detection between geometric models. The
Visual Computer 11, 10, 542–561.

Marti, J. and Bunn, C. 1994. Automated path planning for simulation. In Conf. AI, Simulation
and Planning, AIS94.

Mirtich, B. and Canny, J. F. 1995. Impulse-based simulation of rigid bodies. In Proc. ACM
Symp. Interactive 3D Graphics. 181–188.

Molina-Tanco, L. and Hilton, A. 2000. Realistic synthesis of novel human movements from a
database of motion capture examples. In Proc. IEEE Workshop on Human Motion. 137–142.

Multon, F., France, L., Cani, M.-P., and Debunne, G. 1999. Computer animation of human
walking: a survey. The Journal of Visualization and Computer Animation 10, 3, 39–54.

Noser, H., Pandzic, I. S., Capin, T. K., Thalmann, N. M., and Thalmann, D. 1996. Playing
games through the virtual life network. In Proc. Alife ’96.

Noser, H., Renault, O., Thalmann, D., and Thalmann, N. M. 1995. Navigation for digital
actors based on synthetic vision, memory, and learning. Computers and Graphics 19, 1, 7–19.

Overmars, M. H. and Sv̌estka, P. 1994. A probabilistic learning approach to motion planning.
In Proc. Workshop on Algorithmic Foundations of Robotics. 19–37.

Preparata, F. P. and Shamos, M. I. 1985. Computational Geometry: An Introduction. Springer-
Verlag.

Pullen, K. and Bregler, C. 2002. Motion capture assisted animation: Texturing and synthesis.
ACM Transactions on Graphics (Proc. SIGGRAPH 2002) 21, 3, 501–508.

Raibert, M. H. and Hodgins, J. K. 1991. Animation of dynamic legged locomotion. Computer
Graphics (Proc. SIGGRAPH ’91) 25, 319–358.

ACM Transactions on Graphics, Vol. V, No. N, October 2002.

Planning Biped Locomotion using Motion Capture Data and Probabilistic Roadmaps · 25

Reich, B. D., Ko, H., Becket, W., and Badler, N. I. 1994. Terrain reasoning for human
locomotion. In Proc. Computer Animation ’94. 77–82.

Reynolds, C. W. 1987. Flocks, herds, and schools: A distributed behavioral model. Computer
Graphics (Proc. SIGGRAPH ’87) 21, 25–34.

Rose, C., Cohen, M. F., and Bodenheimer, B. 1998. Verbs and adverbs: Multidimensional
motion interpolation. IEEE Computer Graphics and Applications 18, 5, 32–40.

Rose, C., Guenter, B., Bodenheimer, B., and Cohen, M. F. 1996. Efficient generation of mo-
tion transitions using spacetime constraints. Computer Graphics (Proc. SIGGRAPH ’96) 30,
147–154.

Schödl, A., Szeliski, R., Salesin, D. H., and Essa, I. 2000. Video textures. Computer Graphics
(Proc. SIGGRAPH 2000) 34, 489–498.

Shoemake, K. 1985. Animating rotation with quaternion curves. Computer Graphics (Proc.
SIGGRAPH ’85) 19, 245–54.

Sun, H. C. and Metaxas, D. N. 2001. Automating gait generation. Computer Graphics (Proc.
SIGGRAPH 2001) 35, 261–269.

Sv̌estka, P. and Overmars, M. H. 1998. Coordinated path planning for multiple robots. Robotics
and Autonomous Systems 23, 4, 125–152.

Torkos, N. and van de Panne, M. 1998. Footprint-based quadruped motion synthesis. In Proc.
Graphics Interface ’98. 151–160.

Tu, X. and Terzopoulos, D. 1994. Artificial fishes: Physics, locomotion, perception, behavior.
Computer Graphics (Proc. SIGGRAPH ’94) 28, 43–50.

Unuma, M., Anjyo, K., and Takeuchi, R. 1995. Fourier principles for emotion-based human
figure animation. Computer Graphics (Proc. SIGGRAPH ’95) 29, 91–96.

van de Panne, M. 1997. From footprints to animation. Computer Graphics Forum 16, 4, 211–223.

Witkin, A. and Popović, Z. 1995. Motion warping. Computer Graphics (Proc. SIGGRAPH
’95) 29, 105–108.

ACM Transactions on Graphics, Vol. V, No. N, October 2002.

