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Abstract

This paper proposes a real-time simulation technique for thin shells undergoing large deformation. Shells are thin
objects such as leaves and papers that can be abstracted as 2D structures. Development of a satisfactory phys-
ical model that runs in real-time but produces visually convincing animation of thin shells has been remaining
a challenge in computer graphics. Rather than resorting to shell theory which involves the most complex formu-
lations in continuum mechanics, we adopt the energy functions from the discrete shells proposed by Grinspun
et al. [GHDS03]. For real-time integration of the governing equation, we develop a modal warping technique
for shells. This new simulation framework results from making extensions to the original modal warping tech-
nique [CK05] which was developed for the simulation of 3D solids. We report experimental results, which show
that the proposed method runs in real-time even for large meshes, and that it can simulate large bending and/or
twisting deformations with acceptable realism.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling – Physically Based Modeling; I.6.8 [Simulation and Modeling]: Types of Simulation –
Animation

1. Introduction

Thin flexible objects such as leaves or papers often appear in
computer graphics scenes. Non-zero structural thickness is
a factor that influences their dynamic movements. Neverthe-
less, those objects are often abstracted as two-dimensional
(2D) entities, regarding the rest as visual details. We refer
thin flexible objects which can be abstracted as 2D entities
as thin shells. This paper is about physically-based simula-
tion of thin shells.

Simulation of 3D solids has been studied by the graphics
community [BJ05, GM97, JF03, MDM∗02, TPBF87]. Since
thin shells are special cases of 3D solids, one may apply the
techniques developed for 3D solids to the simulation of thin
shells. Unfortunately, this approach does not produce satis-
factory results; Modeling thin shells as 3D elastic solids re-
quires very fine FEM meshes to correctly capture the global
bending behavior.

There is a different approach to simulating shells, namely,
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representing shells as 2D meshes rather than 3D solids.
However, accurate modeling and simulation of a thin shell
structure with a moderately-sized 2D mesh requires one of
the most complex formulations in continuum mechanics,
shell theory [GZ68].

In this paper, we develop a real-time simulation technique
for thin shells undergoing large rotational deformation. Even
though the present work represents a shell with a 2D mesh,
it does not derive the governing equation from shell theory,
but from a simpler model. A pioneering work of this kind in
the computer graphics field is discrete shells by Grinspun et
al [GHDS03]. They formulated dynamics of thin shells by
resorting to a discrete model instead of Cosserat models that
are normally employed in shell theory. The resulting gov-
erning equation of [GHDS03] takes the same form as that
of 3D solids, which makes it easy to understand and imple-
ment. However, [GHDS03] did not take any particular steps
to make time-integration of the equation run in real-time.

Meanwhile, Choi and Ko [CK05] proposed a technique
called modal warping, which can simulate large rotational
deformation of 3D elastic solids in real-time. But [CK05]
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was not intended for thin shells. On the other hand, Hauser
et al. [HSO03] proposed a real-time technique that can sim-
ulate thin shells. But the technique could not be used for
simulating large rotational deformations.

The present work is based on the discrete shells and the
modal warping technique; Adopting the dynamic formula-
tion of Grinspun et al. [GHDS03], the present work develops
a new simulation framework for thin shells that runs in real-
time by extending the modal warping technique [CK05].

2. Dynamics of Thin Shell

We use a 2-manifold triangular mesh to represent the shell,
and formulate its dynamics with nonlinear membrane and
flexure energy functions that measure the differences be-
tween the undeformed and the deformed states of the mesh.
The energy functions are not a contribution of this paper; All
the energy functions that appear in this section are adopted
from other people’s work. We note that, in fact, the simula-
tion framework we develop in this paper does not depend on
the energy functions being used.

2.1. Membrane Energy

The membrane energy models the shell resisting on intrinsic
deformations, and consists of stretch and shear energies. For
the stretch energy, we use the triangle-based function that
sums up changes in the area

EA � ∑
A

(‖A‖−‖Ā‖)2

‖Ā‖ , (1)

where ‖A‖ and ‖Ā|‖ are the areas of the triangle A in the
deformed and the undeformed states, respectively.

For the shear energy, we use the edge-based function that
sums up changes in the length

EL � ∑
e

(‖e‖−‖ē‖)2

‖ē|‖ , (2)

where ‖e‖ and ‖ē‖ are the lengths of the edge e in the de-
formed and the undeformed states, respectively.

2.2. Flexural Energy

For measuring the flexural energy of the shell, we use the
function proposed by Grinspun et al. [GHDS03],

EB � ∑
e

3
(
θe − θ̄e

)2 ‖ē‖
h̄e

, (3)

where θe and θ̄e are the dihedral angles of the edge e mea-
sured in the deformed and the undeformed states, respec-
tively, and h̄e is the average of the heights of the two trian-
gles sharing the edge e in the undeformed state (See Fig. 1).
This energy function was obtained by integrating the squared
difference of mean curvature at a point over the piecewise

Undeformed State Deformed State

eθ

e
e

eθ

Figure 1: Dihedral angle of an edge in the undeformed and
the deformed states.

linear mesh of the shell, and then by discretizing the integral
(See [GHDS03] for the detailed derivation).

2.3. Governing Equation

The total elastic energy of a thin shell is then defined by the
sum of the membrane and flexural energies

E � kAEA + kLEL + kBEB, (4)

where kA, kL, and kB are the material constants that represent
the stretch, shear, and flexural stiffness, respectively. Differ-
entiating the above energy function with respect to the dis-
placements of the mesh nodes gives the generalized elastic
force due to the elastic potential energy, which can be written
in the form

∂E(u)
∂u

= K(u)u, (5)

where u(t) is a 3n-dimensional vector that represents the
displacements of the n nodes from their original positions.
Then, the governing equation that describes the dynamic
movements of a thin shell can be written as

Mü+Cu̇+K(u)u = F, (6)

where M and C are the mass and damping matrices, respec-
tively, and F(t) is a 3n-dimensional vector that represents
the external forces acting on the n nodes. Here, the elastic
force term K(u)u is nonlinear with respect to u. Therefore
real-time integration of Equation (6) is a nontrivial task.

3. Modal Warping for Shells

For real-time simulation of thin shells, we adopt the modal
warping framework [CK05]. Since the procedure described
in [CK05] is for 3D solids, we have to make modifications
to make it applicable to shells. A major modification is done
to the method to keep track of the orientation of the local
coordinate frames associated with the mesh nodes, which is
presented in Section 3.2.

3.1. Modal Displacements

When there is a small rotational deformation, the generalized
elastic force K(u)u appearing in Equation (6) can be lin-
early approximated as Ku for a constant matrix K. When this
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simplification is applicable, we can decouple Equation (6)
by solving the generalized eigenvalue problem KΦ = MΦΛ
and finding Φ and Λ such that ΦTMΦ = I and ΦTKΦ = Λ.
Since the columns of Φ form a basis of the 3n-dimensional
space, u can be expressed as a linear combination of the
columns:

u(t) = Φq(t). (7)

Here, Φ is the modal displacement matrix, of which the i-th
column represents the i-th mode shape, and q(t) is a vector
containing the corresponding modal amplitudes as its com-
ponents. By examining the eigenvalues we can take only the
m dominant columns of Φ, significantly reducing the amount
of computation. In the following, Φ denotes the 3n × m
submatrix formed by this procedure. Substitution of Equa-
tion (7) into Equation (6) followed by a premultiplication of
ΦT decouples Equation (6) as

Mqq̈+Cqq̇+Kqq = ΦTF, (8)

where Mq = I, Cq = (ξI+ζΛ), and Kq = Λ are now all di-
agonal†, and ΦTF is the modal force. The decoupling shown
in Equation (8) brings a tremendous speed-up in the numer-
ical computation. The essence of modal warping technique
is to decompose a large deformation into a series of small
deformations for which the above decoupling procedure can
apply to; The details are presented in Section 3.3.

3.2. Modal Rotations

To develop a modal warping technique for thin shells, we
must develop a procedure to represent the rotational compo-
nent of deformation in terms of q(t). More specifically, we
need an equation of a similar form as Equation (7), but this
time for w(t), the 3n-dimensional vector formed by concate-
nating all the 3D rotation vectors of the mesh nodes. In the
case of 3D solids, the curl 1

2∇×u gives the rotational com-
ponent of the deformation. However, this curl-based rotation
capturing is not applicable to a shell because the differenti-
ation involved in the curl operation should not be done over
free 3D space but be restricted to the 2D domain occupied
by the shell.

In this section, we develop a novel procedure to calcu-
late the rotational component of deformation. It is based on
the Jacobian of triangle orientation. Imagine a triangle la-
belled A undergoes the deformation shown in Figure 2, in
which xi represent the vertices in the undeformed state, ui
represent the displacements occurred, and ai represent the
position of the vertices after the deformation. Let ωA be the
3D rotation vector that represents the orientational change
occurred to A by this deformation; ωA encodes the rotation
that is made around the unit axis ωA/‖ωA‖ by the angle

† We take the commonly adopted assumption (Rayleigh damping)
that C = ξM+ ζK, where ξ and ζ are scalar weighting factors.

Undeformed State

1x 2x

3x

cmx cma

Deformed State

111 uxa +=
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333 uxa +=

Figure 2: Finding the rotational component ωA(uA) of
a triangle, the deformation of which is given with uA =
[uT

1 |uT
2 |uT

3 ]T.

‖ωA‖. This rotation vector must be a purely geometric func-
tion ωA(uA) of the displacements of the three triangle nodes,
uA = [uT

1 |uT
2 |uT

3 ].

The problem of finding the rotation occurred to the trian-
gle shown in Figure 2 can be formulated as:

argmin
RA

3

∑
i=1

∥∥RA(xi − xcm)− (ai − acm)
∥∥2

, (9)

where RA is the 3× 3 rotation matrix, xcm = 1
3 ∑i xi, and

acm = 1
3 ∑i ai. Unfortunately, differentiating this equation is

difficult because it contains the rotation matrix. When the ro-
tation is infinitesimal, the rotation matrix RA can be approxi-
mated by (I+ωA×) [Gol83], where z× denotes the standard
skew symmetric matrix of vector z. Then Equation (9) can
be written as

argmin
ωA

3

∑
i=1

∥∥(I+ωA×)(xi − xcm)− (ai − acm)
∥∥2

. (10)

If we use the notations pi = xi − xcm and qi = ai − acm, the
above equation can be simplified into

argmin
ωA

3

∑
i=1

‖pi +ωA ×pi −qi‖2. (11)

Equating the derivative of the objective function of Equa-
tion (11) with respect to ωA to zero, we obtain

(
∑
i

pi ×pi ×
)

ωA = −∑
i

pi ×qi. (12)

Here, qi and thus ωA are functions of the displacement uA.
Differentiating both sides of Equation (12) with respect to
uA and evaluating the derivative for the undeformed state,
we obtain the 3× 9 Jacobian matrix

∂ωA

∂uA

∣∣∣
0

= −
(
∑
i

pi ×pi ×
)−1[

p1 ×
∣∣ p2 ×

∣∣ p3 ×
]
. (13)

Equation (13) is derived under the assumption that the defor-
mation contains a small rotational component. The modal
warping procedure introduced in Section 3.3 takes the ap-
proach of decomposing a large rotational deformation into
a number of small rotational deformations so that the above
result can be applied.
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With the Jacobian given in Equation (13), we can approx-
imate ωA(uA) with first-order Taylor expansion

ωA(uA) = ωA(0)+
∂ωA

∂uA

∣∣∣
0
uA +O(u2

A). (14)

Here ωA(0) is zero because there is no rotation at the un-
deformed state. The above was the procedure to obtain the
rotation vector of a triangle. We obtain the rotation vector of
a mesh node by taking average of the rotation vectors of the
triangles sharing the node.

Based on the above discussion, we can now assemble the
Jacobians ∂ωA/∂uA of all the triangles to form the global
matrix W such that Wu gives the 3n dimensional composite
vector w. Finally, expanding u(t) with Equation (7) gives

w(t) ≈ WΦq(t) � Ψq(t). (15)

Both W and Φ are characterized by the thin shell at the un-
deformed state and are thus constant over time. Therefore
we can precompute Ψ. The above equation shows that, as in
the displacement given in Equation (7), we can represent lo-
cal rotations of mesh nodes in terms of q(t). We call Ψ the
modal rotation matrix.

3.3. Integration of Rotational Parts

Equation (15) provides an efficient way to keep track of the
rotations occurring at the shell nodes. However, such rota-
tions are not yet reflected in the calculation of the displace-
ment field u(t). Moreover, the results derived in Sections 3.1
and 3.2 hold only when rotational components of the defor-
mation are moderately small. Both of these problems can
be resolved by introducing a local coordinate frame to each
mesh node.

We embed a local coordinate frame {i} at each node i
such that at the initial state it is aligned with the global co-
ordinate frame. We use the notation {i}(t) to refer to the
local coordinate frame at time t. Let Ri(t) be the rotation
matrix representing the orientation of {i}(t), and u̇L

i (t)dt be
the differential displacement of the i-th node at time t mea-
sured from {i}(t). Then, the finite displacement ui(t) mea-
sured from the global coordinate frame can be calculated as
follows:

ui(t) =
� t

0
Ri(τ)u̇L

i (τ)dτ. (16)

The above integration must be carried out for every node.
We refer the readers to [CK05] for the detailed procedure to
calculate Equation (16).

For the calculation of Equation (16), we need a new gov-
erning equation rather than Equation (6) which can be solved
for uL, the generalized displacement vector measured in the
time-varying local coordinate frames. [CK05] shows that, by
premultiplying R to both sides of Equation (6) and making
assumptions on commutativity in fine meshes and warped

Figure 3: Real-time deformation of a large mesh.

stiffness,

MüL +Cu̇L +KuL = RTF (17)

can be obtained, where K is K(u) in the undeformed state
and R is a 3×3 block diagonal matrix constructed with Ris.

Note that (1) the rotations that occurred over time at the
mesh nodes are now reflected in the result of Equation (16),
and (2) since it integrates small rotations, the equations de-
rived in Sections 3.1 and 3.2 are applicable and can simulate
large rotational deformation of shells.

4. Experiments

The proposed technique was implemented into an Autodesk
MAYA plugin that runs in Microsoft WindowsXP environ-
ment. To obtain the m dominant eigenvalues of large sparse
square matrices and corresponding eigenvectors, we used the
built-in C++ math function eigs in MATLAB. The Jaco-
bians of the energy functions were calculated symbolically
with Maple. All experiments described in this section were
performed on a PC with an Intel Pentium D 3.46GHz proces-
sor, 2GB memory, and an nVIDIA GeForce FX 7900 GTX
graphics card. In all experiments, we fixed the time step size
to h = 1/30 second but we did not encounter any instability
problem.

4.1. Large Mesh Test

We simulated deformation of a 3D dinosaur shape shell
which consists of 25,830 triangles (13,117 vertices and
38,948 edges) with the proposed technique. The simulation
was done with four modes, which needed about 18 sec-
onds of pre-computation. The model was excited by mov-
ing the basis with non-uniform velocities. To achieve real-
time performance, we employed a vertex program on a pro-
grammable graphics hardware as in [CK05]. Fig. 3 shows a
snapshot taken during this experiment. The simulation ran at
about 200 fps.
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10 times stiff At a different view100 times stiff

Figure 4: Simulation of flat and V-beams deforming in the
gravity field.

4.9 m/s0.98 m/s 9.8 m/s

Figure 5: A V-beam deformed by linear modal analysis
(red), by modal warping for thin shells (blue), and by dis-
crete shells (green) under gravities of different magnitudes.

4.2. Flat Beam and V-Beam Test

In this experiment, we tested the bending of flat beams
and V-beams in the gravity field. Fig. 4 shows three pairs
of results generated by the proposed technique using eight
modes. Each pair consists of a flat beam and a V-beam of the
same flexural stiffness for side-by-side comparison. From
left to right, the pairs have increasing flexural stiffness; The
middle pair is ten times as stiff as the leftmost one, and the
rightmost pair is hundred times as stiff as the leftmost one.
The figure shows that the V-beams have different bending
behaviors from the flat beams, and the difference is more
dramatic at smaller flexural stiffness.

4.3. Comparison to Other Methods

This experiment is to compare the results generated by lin-
ear modal analysis (LMA), modal warping for thin shells
(MWTS), and nonlinear discrete shells (DS) of Grinspun et
al. [GHDS03]. We ran the three methods to deform a V-
beam under different gravities. The simulations with LMA
and MWTS were both performed using eight modes. For
running DS, we employed explicit integration and used the
time step size h = 1/30,000 second for numerical stability.
Fig. 5 shows the snapshots taken at the equilibrium states.

Fig. 6 (a) shows the plot of the relative L2 displacement
field error versus gravitational magnitude. We took the result
produced by DS as the ground truth.‡ The error of MWTS is

‡ MWTS and DS use the same energy function, but MWTS makes
some simplifications/assumptions that DS does not make. Therefore

MWTS
LMA

0 1.96 3.92 5.88 7.84 9.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Gravity (m/s

Re
la

tiv
e 

L
üe

rr
or

MWTS
LMA

0 1.96 3.92 5.88 7.84 9.8
0

0.2

0.4

0.6

0.8

1

Gravity (m/s

Re
la

tiv
e 

ar
ea

 c
ha

ng
e

(a) (b)

DS

Figure 6: Error analysis of the V-beam shown in Fig. 5. (a)
The relative L2 displacement field error. (b) The area change
with respect to the initial area; The area change of DS is
almost zero so the curve is almost undistinguishable from
the horizontal axis.

Position-constrained Orientation-constrained Position/Orientation

Figure 7: A flat beam manipulated with a position con-
straint (left), with an orientation constraint (middle), and
with both position and orientation constraints (right). The
position constraints are represented by yellow spheres and
the orientation constraints are represented by RGB axes.

smaller than that of LMA although both of them increase
as the gravitational magnitude increases. Fig. 6 (b) is the
plot of the relative area change with respect to the initial
area. It shows that the area change in MWTS is almost iden-
tical to that in DS. Even though Fig. 6 (a) shows MWTS
produces non-negligible L2 displacement field errors, it was
not easy to visually distinguish between the results produced
with MWTS and DS, unless the results were seen overlayed.

4.4. Manipulation Constraints

The manipulation constraints introduced in modal warping
for 3D elastic solids [CK05] can be applied to modal warp-
ing for thin shells. Fig. 7 shows the snapshots taken while

MWTS cannot be more accurate than DS. It is the price MWTS
should pay for being a real-time algorithm. In principle, the result
of nonlinear FEM simulation based on shell theory should be taken
as the ground truth. But we did not take this approach because (1)
implementation of nonlinear FEM simulation based on shell theory
was too difficult, and (2) the emphasis of the present work is not
on the accuracy of dynamic formulation but on the development of
real-time artifact-free simulation technique for a given dynamic for-
mulation. For this purpose, comparing the result of MWTS with that
of DS was considered good enough.
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(a) (b)

Figure 8: Constraint-driven animation of a character con-
sisting of four thin shells (the hat, body, and two legs).

a flat beam is manipulated with position/orientation con-
straints. The manipulation constraints can be used to ani-
mate a deformable character composed of thin shells. We
simulated a character whose upper body and legs are made
of thin shells (Fig. 8 (a)). As the character makes a dance
motion, the shells were made to make passive dynamic de-
formations, excited by the gross body motion of the charac-
ter. As shown in Fig. 8 (b), the shells were attached to the
skeleton by position/orientation constraints (the RGB axes).

5. Conclusion

In this paper, we proposed a real-time simulation technique
for thin shells. We formulated dynamics of thin shells us-
ing the energy functions proposed in [GHDS03]. Then, we
made modifications to the modal warping technique, which
was originally proposed for 3D elastic solids [CK05], so as
to be used for simulating thin shells. The task involved de-
velopment of a novel procedure to find the rotational com-
ponents of deformation in terms of the modal amplitudes.
Also, we showed that the manipulation constraints intro-
duced in [CK05] can be extended to thin shells. The pro-
posed technique ran stably even when the time step size was
fixed to h = 1/30 second, and produced visually convincing
results.

Although the current implementation is done with the en-
ergy functions introduced in Section 2, it can work for any
given dynamic formulation. We expect the proposed tech-
nique will prove useful in broad application areas, including
computer games and character animation.
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